CORONAVIRUS COVID 19PRINCIPAL

Los grupos de Runner’s se exponen…

Correr acompañados por la muerte. 4,5 metros, una distancia imprudente.

Si tenés que correr podés hacerlo, si no es elemental para tu vida, el concejo es que no lo hagas. Está comprobado que el Covid siempre te alcanzará. Pocos saben del tiempo y modo que este virus llega al otro para contagiarlo, un barbijo no alcanza, correr alejado de otro deportista tampoco asegura el fracaso del contagio. La estela que un corredor genera alrededor de su físico es de importancia, detrás o a su lado este virus puede esperar al próximo con una ventana de

La Figura muestra los contornos de la velocidad del aire en el plano central vertical para dos personas que corren en línea a una distancia de 4.5 m .

Se puede visualizar claramente la estela (en inglés llamada slipstream) detrás de cada uno de los corredores en una distancia de 4,5 metros, lo que nos muestra a las claras el gran peligro de » salir a correr «.

People running in park – marathon. Healthy lifestyle

Para el caso de dos personas inmóviles a 1,5 m de distancia, las gotas que se exhalan en los  diferentes momentos en el tiempo, incrementadas con la sudoración  las gotas son más grandes, provocando la caída más rápida, como se esperaba, el flugge flotado es mas espeso y persistente .

#QuedateEnCasaNoSalgas a correr.

Ya hay estudios de las distancias,

Ai ZT, Melikov AK. 2018. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review. Indoor Air 28: 500-524.
ANSYS Inc. 2019. Ansys Fluent Theory Guide, Release 19.1, Canonsburg.
Blocken B, van Druenen T, Toparlar Y, Malizia F, Mannion P, Andrianne T, Marchal T, Maas GJ, Diepens J. 2018a. Aerodynamic drag in cycling pelotons: new insights by CFD simulation and wind tunnel testing.
Journal of Wind Engineering & Industrial Aerodynamics 179: 319-337.
Blocken B, van Druenen T, Toparlar Y, Andrianne T. 2018b. Aerodynamic analysis of different cyclist hill descent positions. Journal of Wind Engineering & Industrial Aerodynamics 181: 27-45.
Blocken B, van Druenen T, Toparlar Y, Andrianne T. 2019. CFD analysis of an exceptional cyclist sprint position.
Sports Engineering 22:10.
Blocken B. 2015. Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build Environ 91:219–245
Casey M, Wintergerste T. 2000. Best Practice Guidelines. ERCOFTAC Special Interest Group on ‘‘Quality and Trust in Industrial CFD’’. ERCOFTAC
Franke J, Hellsten A, Schlünzen H, Carissimo B. 2007. Best practice guideline for the CFD simulation of flows in the urban environment, COST action 732
Johnson GR, Morawska L. 2009. The mechanism of breath aerosol formation. Journal of Aerosol Medicine and Pulmonary Drug Delivery 22(3): 229-237.
Launder BE, Spalding DB. 1974. The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269-289.
Mannion P, Toparlar Y, Blocken B, Hajdukiewicz M, Andrianne T, Clifford E. 2019. Impact of pilot and stoker torso angles in tandem para-cycling aerodynamics. Sports Engineering 22: 3.
Menter FR. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32(8): 1598–1605 Montazeri H, Blocken B, Hensen JLM. 2015a. CFD analysis of the impact of physical parameters on evaporative cooling by a mist spray system. Applied Thermal Engineering 75: 608-622.
Montazeri H, Blocken B, Hensen JLM. 2015b. Evaporative cooling by water spray systems: CFD simulation, experimental validation and sensitivity analysis. Building and Environment 83: 129-141. Rosin P, Rammler E. 1933. The laws governing the fineness of powdered coal. J Inst Fuel 31: 29-36. Seto WH, Tsang D, Yung RWH, Ching TY, Ng TK, Ho M, Ho LM, Peiris JSM. 2003. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet 361(9368): 1519-1520.
Shih T-H, Liou WW, Shabbir A, Yang Z, Zhu J. 1995. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computer Fluids 24: 227-238.
Subramaniam S. 2013. Lagrangian-Eulerian methods for multiphase flows. Prog Energy Combust Sci 39: 215-245. Sureshkumar R, Kale SR, Dhar PL. 2008. Heat and mass transfer processes between a water spray and ambient air – I. Experimental data. Applied Thermal Engineering 28: 349-360. Tominaga Y, Mochida A, Yoshie R, Kataoka H, Nozu T, Yoshikawa M, Shirasawa T. 2008. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerodyn 96:1749–1761 Tucker P, Mosquera A. 2001. NAFEMS introduction to grid and mesh generation for CFD. NAFEMS CFD Work. Group.
Wang B, Zhang A, Sun JL, Liu YH, Hu J, Xu LX. 2005. Study of SARS transmission via liquid droplets in air.
Journal of Biomechanical Engineering – Transactions of the ASME 127(1): 32-38.
Xie X, Li Y, Sun H, Liu L. 2009. Exhaled droplets due to talking and coughing. J. R. Soc. Interface 6: 703-714.
Yang S, Lee GWM, Chen CM, Wu CC, Yu KP. 2007. The size and concentration of droplets generated by coughing in human subjects. Journal of Aerosol Medecine 20(4): 484-494.
Zhu S, Kato S, Yang JH. 2006. Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment. Building and Environment 41: 1691-1702.
Zhu SW, Kato S, Yang JH. 2004. Investigation of SARS infection via droplets of coughed saliva. Built Environment and Public Health, Procedings. 2nd International Conference on Built Environment and Public Health (BEPH 2004), pp. 341-354.

WP2Social Auto Publish Powered By : XYZScripts.com